An Introduction to Curve Sketching

Mark Holland

Cartesian and polar coordinates: brief notes

Recall that a point $P:(x, y)$ in the plane can be represented by giving its horizontal distance x and vertical distance y relative to a fixed origin $O:(0,0)$. Equivalently a point $P:(r, \theta)$ can be represented by specifying its distance r from the origin together with the angle made by the line $O P$ with the horizontal axis. The coordinates (x, y) are called Cartesian, while the coordinates (r, θ) are called polar.

Question 1 For a given point P, what is the relationship between its Cartesian coordinates (x, y) and its polar coordinates (r, θ) ?

When using Cartesian/polar coordinates, the cosine and sine functions, $\cos \theta, \sin \theta$, respectively pop up quite frequently. Their graphs are shown below, as a function of the angle $\theta \in[0,360]$.

Sketching curves in polar coordinates

Typically a curve is described by writing the vertical coordinate y as a function of the horizontal coordinate x, ie, calculate y given x. However we can also specify a curve by calculating r as a function of the angle θ. It is sometimes easier to do this, since its Cartesian representation may be messy!

Question 2 What is the curve given by the equation $r=1$? Now, sketch the curve given by the equation $r=2 \cos \theta$.

Question 3 Show that the latter curve, $r=2 \cos \theta$ has the Cartesian representation $(x-1)^{2}+y^{2}=1$. What is this curve?

Exercise 1 Match the following Polar equations with the 6 curves P, Q, R, S, T, U given on the attached sheet. A) $r=2$, B) $r=1+\frac{1}{2} \cos \theta$, C) $r=1+\frac{3}{4} \cos \theta$, D) $\left.r=1+\cos \theta, E\right) r=1+5 \cos \theta$, F) $r=1+10 \cos \theta$.

Hint 1 Usually a calculator is not needed to sketch a curve. You just need to get a feel for the shape of the curve, and its distinct features, like its maxima/minima, and where it crosses the axes, etc. The curve may have other features, like cusps, we'll say more about this.

Cycloids and trochoids

Consider a wheel or a disc rolling on a horizontal surface. Let P be a point on the rim, and Q a point at the center. Consider also the straight line joining P to Q. Let X be on the line between P and Q, and Y a point on the line $P Q$ extended off the disk, see below.

Question 4 If P is initially in contact with the surface, and the disc rolls to the right, does P move up and to the left or up and to the right? Assume the disc does not slip.

Exercise 2 Investigate the paths traced out by P, Q, X and Y as the disc rolls to the right (without slipping). For two revolutions of the disc, sketch the corresponding paths these points make as seen by a still observer.

Hint 2 The equation of a general point Z on the line $P Q$, (and $P Q$ extended), is given by

$$
x(\theta)=a\left(\frac{2 \pi \theta}{360}\right)-b \sin \theta, \quad y(\theta)=a-b \cos \theta
$$

where θ is the angle turned through, x and y are the Cartesian coordinates of Z, a is the radius of the disc, and b determines how far Z is along the line $P Q$ from Q. (eg $b=a$ for $P, b<a$ for X and Q, and $b>a$ for Y.)

A disc rolling on a disc: epicycloids

Consider two disks, one rolling on another. Assume disc A is fixed, while disc B rolls on the rim of A without slipping. Let P be a point on the rim of B , and Q a point at the center of B . Consider also the straight line joining P to Q. Let X be on the line between P and Q, and Y a point on the line $P Q$ extended off the disk, see below.

Exercise 3 Suppose the radius of A equals the radius of B. Investigate the paths traced out by P, Q, X and Y when disc B rolls around A (without slipping). Sketch the corresponding paths.

Exercise 4 Suppose the radius of disc $B=1 / 2$ radius of disc A. Sketch the paths of P, Q, X and Y. What about if the radius of disc $B=1 / 5$ radius of disc A ?

Exercise 5 Considering the point P only, what path does P trace out if i) the radius of disc $B=2 / 3$ radius of disc A, ii) the radius of disc $B=2 / 5$ radius of disc A, iii) the radius of disc $B=4 / 7$ radius of disc A. iv) (HARDER), the radius of disc $B=c$ times the radius of disc A, where $c=p / q$ and $p<q$ are integers. v) (CHALLENGE), the radius of disc $B=c$ times the radius of disc A where c is an irrational number (eg $c=1 / \sqrt{5})$.

A disc rolling in a disc: hypocycloids

Consider two disks, one rolling inside the other. Assume disc A is fixed, while disc B rolls on the (inside) rim of A without slipping. Just consider the point P on the rim of B, see picture below.

Exercise 6 What path does P trace out if i) the radius of disc $B=1 / 2$ radius of disc A, ii) the radius of disc $B=1 / 4$ radius of disc A, iii) the radius of disc $B=2 / 5$ radius of disc A. iv) (HARDER), the radius of disc $B=c$ times the radius of disc A, where $c=p / q$ and $p<q$ are integers. v) (CHALLENGE), the radius of disc $B=c$ times the radius of disc A where c is an irrational number.

Rose curves and spirals

Exercise 7 Sketch the curves given by the equations (in polar coordinates): i) $r=\sin 2 \theta$, ii) $r=\sin 3 \theta$, iii), $r=\sin 4 \theta$ and iv) $r=\sin 5 \theta$ What about for $r=\sin n \theta$, for any integer n ?

Exercise 8 Sketch the curve given by the equation (in polar coordinates) $r=a \theta$, where $a>0$ is fixed.

Conic sections

Consider the polar equation:

$$
r=\frac{1}{1+e \cos \theta}, \quad e \geq 0
$$

Exercise 9 Sketch this polar curve when i) $e=0$, ii) $0<e<1$, iii), $e=1$ and $e>1$.

The curves you obtain are conic sections, namely a circle, an ellipse, a parabola, and a hyperbola.

